Neural differentiation of mouse embryonic stem cells in vitro and after transplantation into eyes of mutant mice with rapid retinal degeneration.
نویسندگان
چکیده
Embryonic stem (ES) cells can differentiate into many specialized cell types, including those of the nervous system. We evaluated the differentiation of enhanced green fluorescent protein (EGFP)-expressing B5 mouse ES cells in vitro and in vivo after transplantation into the eyes of mice with hereditary retinal degeneration. After neural induction with retinoic acid, the majority of cells in embryoid bodies expressed markers for neural progenitors as well as for immature and mature neurons and glial cells. When induced ES cells were plated in vitro, further differentiation was observed and the majority of cells expressed beta-III Tubulin, a marker for immature neurons. In addition, many plated cells expressed markers for mature neurons or glial cells. Four days after intravitreal transplantation into the eyes of rd1 mice (a model of rapid retinal degeneration), donor cells appeared attached to the vitreal surface of the retina. After 6 weeks in vivo, most transplanted cells remained adherent to the inner retinal surface, and some donor cells had integrated into the retina. Transplanted cells exhibited some properties typical of neurons, including extensive process outgrowth with numerous varicosities and expression of neuronal and synaptic markers. Therefore, after induction B5 ES cells can acquire the morphologies of neural cells and display markers for neuronal and glial cells in vitro and in vivo. Furthermore, when placed in the proper microenvironment ES-derived neural precursors can associate closely with or migrate into nervous tissue where differentiation appears to be determined by cues provided by the local environment, in this case the degenerating neural retina.
منابع مشابه
The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملCell based therapies in retinal diseases
Background Degenerative retinal diseases, including age related macular degeneration, glaucoma, and hereditary retinal dystrophies are major causes of blindness. The principal defect in these diseases is cell loss which is amenable to both cell based neuroprotective and neuroregenerative therapies. To briefly review the lines of research and potential candidates for cell based therapies among ...
متن کاملThe Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells
Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...
متن کاملDifferentiation of Mouse Stem Cells into Neural Cells on PLGA Microspheres Scaffold
The cellular therapy and nerve tissue engineering will probably become a major therapeutic strategy for promoting axonal growth through injured area in central nervous system and peripheral nervous system in the coming years. The stem cell carrier scaffolds in nerve tissue engineering resulted in strong survival of cells and suitable differentiation into n...
متن کاملTransplantation and Homing of Mouse Embryonic Stem Cells Treated with Erythropoietin in Spleen and Liver of irradiated mice
Background: The present study was designed to evaluate the homing potential of mouse embryonic stem cells (ESC) treated with erythropoietin (EPO) in hematopoietic organs such as spleen and liver after transplantation using morphological and immuno-histochemical techniques. Methods: Day-four embryoid body (EB)-derived cells were dissociated and re-plated in medium in the presence and absence of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1014 1-2 شماره
صفحات -
تاریخ انتشار 2004